(4) Univariable Analysis of Numerical Data

Dr. Wan Nor Arifin

Biostatistics and Research Methodology Unit Universiti Sains Malaysia wnarifin@usm.my / wnarifin.github.io

Last update: Jul 16, 2023

Outlines

- Introduction
- Independent *t*-test
- Paired *t*-test
- ANOVA

Learning outcomes

- Understand the concept of parametric test
- Familiarize with selected parametric tests for a numerical outcome
- Understand and able to interpret the results of the selected parametric tests

Introduction

Parametric Test

- Statistical test that requires:
 - Sample data come from population data that can be modeled by specific statistical distribution.
 - e.g. SBP of sample ← Normally distributed SBP of population.
 - Fixed set of parameters for chosen distribution.
 - e.g. normal distribution ← mean, SD.

Parametric Test

- Statistical test that requires (cont.):
 - Specific parameters to be tested.
 - e.g. MEAN is different or not.
 - Several assumptions to be tested before performing analysis.
 - Less flexible, BUT powerful and commonly used.

Parametric Test

- Parametric tests for comparison of means:
 - Two independent samples: Independent *t*-test
 - Two related samples: Paired *t*-test
 - More than two independent samples: ANOVA

Two independent samples: Independent *t*-test

Independent t-test

- Purpose: Compare MEANS of TWO independent samples/groups.
- Assumptions:

1.Numerical outcome.

2.Normal data distribution for each group.

3. Equal variance between groups.

Independent t-test

Research objective:

To compare mean cholesterol level between male and female.

Research question:

Is there any difference in mean cholesterol level between male and female populations?

Independent *t*-test

RQ: Is there any difference in mean cholesterol level between male and female populations?

Independent *t*-test: Example

- Sample size: 40/group
- Group: 2 (male and female)
- Outcome: cholesterol level in mmol/L

Normality: Histogram

Normality: Boxplot

Independent t-test: Results

Group Statistics

	gender	N	Mean	Std. Deviation	Std. Error Mean
cholesterol in mmol/L	male	40	7.693	.6439	.1018
	female	40	8.768	.6462	.1022

Independent t-test: Results

Table 1: Comparison of cholesterol level between male and female.

Variable	Mean	(SD)	Mean difference (95% CI)	<i>t</i> -statistic (df)	P-value ^a
Cholesterol (mmol/L)	Male Female n = 40 $n = 40$		-1.08 (-1.36, -0.79)	-7.45 (78)	< 0.001
	7.69 (0.644)	8.77 (0.646)	-		

^aIndependent *t*-test.

Two related samples: Paired *t*-test

Paired *t*-test

- Purpose: Compare MEAN DIFFERENCE between TWO related samples, i.e. equal to ZERO if there is no difference.
- Assumptions:

1.Numerical outcome.

2.Normal distribution of the DIFFERENCES between TWO paired observations (e.g. SBP after treatment – SBP before treatment).

Paired *t*-test

Research objective:

To compare mean cholesterol level of hypertensive patients before and after treatment.

Research question:

Is there any difference in mean cholesterol level of hypertensive patients before and after treatment?

Paired *t*-test

RQ: Is there any difference in mean mean cholesterol level of hypertensive patients before and after treatment?

Paired *t*-test: Example

- Sample size: 30 paired observations
- Repetition: 2 (before and after treatment)
- Outcome: cholesterol level in mmol/L

Normality: Histogram

Normality: Boxplot

Paired *t*-test: Results

		F	aired Sample	s Statistic	5				
			Mean	N	Std. Deviation	Std. Error Mean			
	Pair 1	cholesterol in mmol/L before treatment	8.247	30	.3277	.0598			
		cholesterol in mmol/L post treatment	7.440	30	.6806	.1243			
		Paired Sam	nples Correlat	tions					
			N	Correlation	n Sig.				
	Pair 1	cholesterol in mmol/L before treatment & cholesterol in mmol/L post treatment	30	.485	.007				
		Pa	aired Samp	oles Te	st				
			Paired Differ	ences					
			Std. Error	95%	Confidence Differe	Interval of the ence			
	Mean	Std. Deviation	Mean	L	_ower	Upper	t	df	Sig. (2-tailed)
cholesterol in mmol/L before treatment - cholesterol in mmol/L post treatment	.8067	.5953	.108	7	.5844	1.0290	7.421	29	.000
		mea	n differen	ce = 8.2	247 – 7.44	40			

Paired Samples Statistics

ch

Pair 1

(4) Univariable Analysis of Numerical Data

Paired *t*-test: Results

Table 2: Comparison of cholesterol level before and after treatment.

(95% CI)	()	
0.81 (0.58,	7.421 (29)	< 0.001
1.03)		
-	(95% CI) 0.81 (0.58, 1.03)	(95% CI) 0.81 (0.58, 7.421 (29) 1.03)

^aPaired *t*-test.

More than two independent samples: ANOVA

ANOVA

- <u>AN</u>alysis <u>Of VA</u>riance.
- Purpose: Compare MEANS of THREE/MORE independent samples/groups.
- Assumptions:
 - 1.Numerical outcome.
 - 2.Normal data distribution for each group.
 - 3.Equal variance between groups.

ANOVA

Research objective:

To compare mean cholesterol level between Group A, B and C treatment groups.

Research question:

Is there any difference in mean cholesterol level between Group A, B and C treatment groups?

ANOVA

RQ: Is there any difference in mean cholesterol level between Group A, B and C treatment groups?

ANOVA: Example

- Sample size: 25/group
- Group: 3 (Grp A, B and C)
- Outcome: cholesterol level in mmol/L

Normality: Histogram

(4) Univariable Analysis of Numerical Data

Normality: Boxplot

Descriptives

cholesterol in mmol/L

					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Grp A	25	7.256	.3429	.0686	7.114	7.398	6.5	7.8
Grp B	25	7.944	.3190	.0638	7.812	8.076	7.3	8.7
Grp C	25	8.948	.3057	.0611	8.822	9.074	8.5	9.7
Total	75	8.049	.7685	.0887	7.873	8.226	6.5	9.7

Test of Hon	nogenei	ty of Va	riances					
cholesterol in mm	ol/L			/	Equal: <i>p</i> 2	≥ 0.05		
Levene					Unequal:	<i>p</i> <0.05		
Statistic	df1	df2	Sig.					
.105	2	72	.9	00	df1 – 7			
	ANOVA $df_1 = 2$ $df_2 = 72$							
cholesterol in mm	ol/L							
	Sum	of			_			
	Squa	res	df	Mean Square	F	Sig.		
Between Groups	3	6.202	2	18.101	173.639	.000		
Within Groups		7.506	72	.104				
Total	4	3.707	74					

Robust Tests of Equality of Means

cholesterol in mmol/L							
	Statistic ^a	df1	df2				
Welch	172.475	2	47.896				

a. Asymptotically F distributed.

Use Welch ANOVA when variance not equal

Sig.

.000

Multiple Comparisons

Dependent Variable: cholesterol in mmol/L

				Mean Difference (l-			95% Confidence Interval	
		(I) intervention group	(J) intervention group	J)	Std. Error	Sig.	Lower Bound	Upper Bound
	Sidak	Grp A	Grp B	6880	.0913	.000	911	465
			Grp C	-1.6920	.0913	.000	-1.915	-1.469
		Grp B	Grp A	.6880	.0913	.000	.465	.911
Equal	variance		Grp C	-1.0040	.0913	.000	-1.227	781
		Grp C	Grp A	1.6920	.0913	.000	1.469	1.915
			Grp B	1.0040	.0913	.000	.781	1.227
	Games-Howell	Grp A	Grp B	6880	.0937	.000	915	461
			Grp C	-1.6920	.0919	.000	-1.914	-1.470
		Grp B	Grp A	.6880*	.0937	.000	.461	.915
Jnequal	variance		Grp C	-1.0040	.0884	.000	-1.218	790
		Grp C	Grp A	1.6920	.0919	.000	1.470	1.914
			Grp B	1.0040	.0884	.000	.790	1.218

*. The mean difference is significant at the 0.05 level.

	Table 3: Comparison of cholestero	l level between the	three intervention groups.
--	-----------------------------------	---------------------	----------------------------

Groups	п	Cholesterol (mmol/L) Mean (SD)	<i>F</i> -statistic (df1, df2) ^a	<i>P</i> -value ^a
Grp A	25	7.26 (0.343)	173.64	< 0.001 ^b
Grp B	25	7.94 (0.319)	(2, 72)	
Grp C	25	8.95 (0.306)		

^aOne-way ANOVA, ^b Post-hoc multiple comparison with Sidak correction shows significant difference between all intervention groups (P < 0.001).

Quiz

- Briefly describe about parametric test
- Describe the purpose of testing by independent *t*-test
- Describe the purpose of testing by paired *t*-test
- Describe the purpose of testing by ANOVA

Quiz

Table 2. Comparison of FBS pre- and post-intervention for exercise and control groups

Variables	Mean (SD)	Mean (SD)	Mean difference (95% CI)	<i>t-</i> statistic (df)	<i>P</i> -value
FBS level (mg/dl)	Pre-trial	Post-trial			
Exercise group $(n = 25)$	175.3 (17.2)	124.0 (7.7)	51.3 (44.9, 57.6)	16.67 (24) ^a	0.001 ^c
Control group $(n = 25)$	165.0 (18.0)	148.6 (15.2)	16.4 (11.2, 21,6)	6.48 (24) ^a	0.001 ^c
Mean difference (95% CI)	10.3 (0.3, 20.1)	-24.6 (-31.4, -17.1)	34.9 (26.8, 42.8)	8.75 (48) ^b	0.001 ^c

FBS = fasting blood sugar, ^a Paired *t*-test, ^b Independent *t*-test, ^c *P*-value is significant at *P* < 0.05

Ezema, C. I., Omeh, E., Onyeso, O. K. K., Anyachukwu, C. C., Nwankwo, M. J., Amaeze, A., ... & Ugwuanyi, I. (2019). The effect of an aerobic exercise programme on blood glucose level, cardiovascular parameters, peripheral oxygen saturation, and body mass index among Southern Nigerians with type 2 diabetes mellitus, undergoing concurrent sulfonylurea and metformin treatment. The Malaysian journal of medical sciences: MJMS, 26(5), 88.

Quiz

Motives of participating in PA	Co-curricular	Mean (SD)	F-stat (df)	P-value
Enjoyment	Arts Uniform Sports	3.91 (0.59) 3.78 (0.63) 3.98 (0.57)	2.790 (2,579)	0.062
Mastery	Arts Uniform Sports	3.55 (0.53) 3.47 (0.48) 3.57 (0.51)	0.771 (2,578)	0.463
Competition	Arts Uniform Sports	3.72 (0.65) 3.57 (0.70) 3.78 (0.65)	2.336 (2,581)	0.098
Affiliation	Arts Uniform Sports	4.17 (0.56) 3.99 (0.62) 4.30 (0.49)	8.223 (2,584)	< 0.001
Appearance	Arts Uniform Sports	3.79 (0.50) 3.62 (0.48) 3.85 (0.53)	4.833 (2,582)	0.008
Physical	Arts Uniform Sports	3.32 (0.48) 3.31 (0.32) 3.44 (0.43)	4.634 (2,575)	0.010
Psychological	Arts Uniform Sports	3.74 (0.62) 3.79 (0.53) 3.83 (0.58)	1.736 (2,579)	0.177
Other's expectation	Arts Uniform Sports	3.02 (0.65) 2.97 (0.44) 3.10 (0.62)	1.673 (2,576)	0.189

Table 2. Comparison of means of motives of PA participation between types of co-curricular activity

Kuan, G., Abdullah, N., Kueh, Y. C., Ismail, M., Shafei, M. N., & Morris, T. (2019). Co-curricular activities and motives for participating in physical activity among health sciences students at Universiti Sains Malaysia, Malaysia. The Malaysian journal of medical sciences: MJMS, 26(1), 138.

Thank You